

 Chapter 1: What Is VBA?

 ISBN-10: 0-470-04674-0

 ISBN-13: 978-0-470-04674-6

 by John Walkenbach
 Revised by Jan Karel Pieterse

Excel® 2007 VBA
Programming

FOR

DUMmIES
‰

01_046746 ffirs.qxp 1/12/07 5:50 PM Page i

Excel® 2007 VBA Programming For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. Microsoft and Excel are reg-
istered trademarks of Microsoft Corporation in the United States and/or other countries. All other trade-
marks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any
product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2006939593

ISBN: 978-0-470-04674-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_046746 ffirs.qxp 1/12/07 5:50 PM Page ii

About the Author
John Walkenbach is the author of more than 50 spreadsheet books and lives
in southern Arizona. Visit his Web site at http://j-walk.com.

Dedication
“This book is dedicated to Jim Kloss and Esther Golton — my two favorite
people in Matanuska-Susitna county. By putting their names in this book, I’m
ensured of at least one sale in Alaska.”

Author’s Acknowledgments
Thanks to all of the talented people at Wiley Publishing for making it so easy
to write these books. And special thanks to Jan Karel Pieterse for his assis-
tance with this edition.

01_046746 ffirs.qxp 1/12/07 5:50 PM Page iii

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Beth Taylor

Executive Editor: Greg Croy

Copy Editor: Beth Taylor

Technical Editor: Allen Wyatt

Editorial Manager: Jodi Jensen

Media Development Coordinator:
Laura Atkinson

Media Project Supervisor: Laura Moss

Media Development Manager:
Laura VanWinkle

Media Development Associate Producer:
Richard Graves

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Jennifer Theriot

Layout and Graphics: Carl Byers, Stephanie D.
Jumper, Barbara Moore,
Julie Trippetti

Proofreaders: Laura Albert, John Greenough,
Techbooks

Indexer: Techbooks

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_046746 ffirs.qxp 1/12/07 5:50 PM Page iv

Introduction

Greetings, prospective Excel programmer . . .

Thanks for buying my book. I think you’ll find that it offers a fast, enjoyable way
to discover the ins and outs of Microsoft Excel programming. Even if you don’t
have the foggiest idea of what programming is all about, this book can help you
make Excel jump through hoops in no time (well, it will take some time).

Unlike most programming books, this one is written in plain English, and
even normal people can understand it. Even better, it’s filled with information
of the “just the facts, ma’am” variety — and not the drivel you might need
once every third lifetime.

Is This the Right Book?
Go to any large bookstore and you’ll find many Excel books (far too many,
as far as I’m concerned). A quick overview can help you decide whether this
book is really right for you. This book

� Is designed for intermediate to advanced Excel users who want to
master Visual Basic for Applications (VBA) programming.

� Requires no previous programming experience.

� Covers the most commonly used commands.

� Is appropriate for Excel 2007.

� Just might make you crack a smile occasionally — it even has cartoons.

If you are using Excel 2000, XP, or 2003, this book is not for you. Excel 2007 is
so different from previous versions. If you’re still using a pre-2007 version of
Excel, locate a book that is specific to that version.

This is not an introductory Excel book. If you’re looking for a general-purpose
Excel book, check out any of the following books, which are all published
by Wiley:

� Excel 2007 For Dummies, by Greg Harvey

� Excel 2007 Bible, by John Walkenbach (yep, that’s me)

� Excel 2007 For Dummies Quick Reference, by John Walkenbach
(me again) and Colin Banfield

03_046746 intro.qxp 1/12/07 5:51 PM Page 1

Notice that the title of this book isn’t The Complete Guide to Excel VBA
Programming For Dummies. I don’t cover all aspects of Excel programming —
but then again, you probably don’t want to know everything about this topic.
In the unlikely event that you want a more comprehensive Excel program-
ming book, you might try Microsoft Excel 2007 Power Programming With VBA,
by John Walkenbach (is this guy prolific, or what?), also published by Wiley.

So You Want to Be a Programmer . . .
Besides earning money to pay my bills, my main goal in writing this book is
to show Excel users how to use the VBA language — a tool that helps you
significantly enhance the power of the world’s most popular spreadsheet.
Using VBA, however, involves programming. (Yikes! The p word.)

If you’re like most computer users, the word programmer conjures up an
image of someone who looks and behaves nothing like you. Perhaps words
such as nerd, geek, and dweeb come to mind.

Times have changed. Computer programming has become much easier, and
even so-called normal people now engage in this activity. Programming simply
means developing instructions that the computer automatically carries out.
Excel programming refers to the fact that you can instruct Excel to automati-
cally do things that you normally do manually — saving you lots of time and
(you hope) reducing errors. I could go on, but I need to save some good stuff
for Chapter 1.

If you’ve read this far, it’s a safe bet that you need to become an Excel
programmer. This could be something you came up with yourself or
(more likely) something your boss decided. In this book, I tell you enough
about Excel programming so that you won’t feel like an idiot the next time
you’re trapped in a conference room with a group of Excel aficionados. And
by the time you finish this book, you can honestly say, “Yeah, I do some
Excel programming.”

Why Bother?
Most Excel users never bother to explore VBA programming. Your interest in
this topic definitely places you among an elite group. Welcome to the fold! If
you’re still not convinced that mastering Excel programming is a good idea,
I’ve come up with a few good reasons why you might want to take the time to
learn VBA programming.

2 Excel 2007 VBA Programming For Dummies

03_046746 intro.qxp 1/12/07 5:51 PM Page 2

� It will make you more marketable. Like it or not, Microsoft’s applications
are extremely popular. You may already know that all applications in
Microsoft Office support VBA. The more you know about VBA, the better
your chances for advancement in your job.

� It lets you get the most out of your software investment (or, more
likely, your employer’s software investment). Using Excel without
knowing VBA is sort of like buying a TV set and watching only the
odd-numbered channels.

� It will improve your productivity (eventually). Mastering VBA
definitely takes some time, but you’ll more than make up for this in
the amount of time you ultimately save because you’re more productive.
Sort of like what they told you about going to college.

� It’s fun (well, sometimes). Some people really enjoy making Excel do
things that are otherwise impossible. By the time you finish this book,
you just might be one of those people.

Now are you convinced?

What I Assume about You
People who write books usually have a target reader in mind. For this book,
my target reader is a conglomerate of dozens of Excel users I’ve met over the
years (either in person or out in cyberspace). The following points more or
less describe my hypothetical target reader:

� You have access to a PC at work — and probably at home.

� You’re running Excel 2007.

� You’ve been using computers for several years.

� You use Excel frequently in your work, and you consider yourself to be
more knowledgeable about Excel than the average bear.

� You need to make Excel do some things that you currently can’t make it do.

� You have little or no programming experience.

� You understand that the Help system in Excel can actually be useful. Face
it, this book doesn’t cover everything. If you get on good speaking terms
with the Help system, you’ll be able to fill in some of the missing pieces.

� You need to accomplish some work, and you have a low tolerance for
thick, boring computer books.

3Introduction

03_046746 intro.qxp 1/12/07 5:51 PM Page 3

Obligatory Typographical
Conventions Section

All computer books have a section like this. (I think some federal law requires
it.) Read it or skip it.

Sometimes, I refer to key combinations — which means you hold down one
key while you press another. For example, Ctrl+Z means you hold down the
Ctrl key while you press Z.

For menu commands, I use a distinctive character to separate menu items.
For example, you use the following command to open a workbook file:

File➪Open

Note, that in Excel 2007, there is no such thing as a “File” menu visible on
your screen. In fact the File menu has been replaced with the Office button, a
little round contraption that shows up on the top-left side of any Office appli-
cation that has implemented what is called the Ribbon. Any text you need to
enter appears in bold. For example, I might say, enter =SUM(B:B) in cell A1.

Excel programming involves developing code — that is, the instructions Excel
follows. All code in this book appears in a monospace font, like this:

Range(“A1:A12”).Select

Some long lines of code don’t fit between the margins in this book. In such
cases, I use the standard VBA line continuation character sequence: a space
followed by an underscore character. Here’s an example:

Selection.PasteSpecial Paste:=xlValues, _
Operation:=xlNone, SkipBlanks:=False, _
Transpose:=False

When you enter this code, you can type it as written or place it on a single
line (omitting the spaces and the underscore characters).

Check Your Security Settings
It’s a cruel world out there. It seems that some scam artist is always trying to
take advantage of you or cause some type of problem. The world of comput-
ing is equally cruel. You probably know about computer viruses, which can

4 Excel 2007 VBA Programming For Dummies

03_046746 intro.qxp 1/12/07 5:51 PM Page 4

cause some nasty things to happen to your system. But did you know that
computer viruses can also reside in an Excel file? It’s true. In fact, it’s rela-
tively easy to write a computer virus by using VBA. An unknowing user can
open an Excel file and spread the virus to other Excel workbooks.

Over the years, Microsoft has become increasingly concerned about security
issues. This is a good thing, but it also means that Excel users need to under-
stand how things work. You can check Excel’s security settings by using the
File➪Excel Options➪Trust Center➪Trust Center Settings command. There
is a plethora of options in there. If you click the Macro Settings tab, your
options are:

� Disable all macros without notification: Macros will not work,
regardless of what you do.

� Disable all macros with notification: When you open a workbook with
macros you will either see the Message Bar open with an option you can
click to enable macros, or (if the VBE is open), you’ll get a message
asking if you want to enable macros.

� Disable all macros except digitally signed macros: Only macros with a
digital signature are allowed to run (but even for those signatures you
haven’t marked as trusted you still get the security warning).

� Enable all macros (not recommended; potentially dangerous code
can run).

Consider this scenario: You spend a week writing a killer VBA program that
will revolutionize your company. You test it thoroughly, and then send it to
your boss. He calls you into his office and claims that your macro doesn’t do
anything at all. What’s going on? Chances are, your boss’s security setting
does not allow macros to run. Or, maybe he chose to disable the macros
when he opened the file.

Bottom line? Just because an Excel workbook contains a macro, it is no guar-
antee that the macro will ever be executed. It all depends on the security set-
ting and whether the user chooses to enable or disable macros for that file.

In order to work with this book, you will need to enable macros for the files you
work with. My advice is to use the second security level. Then when you open
a file that you’ve created, you can simply enable the macros. If you open a file
from someone you don’t know, you should disable the macros and check the
VBA code to ensure that it doesn’t contain anything destructive or malicious.

5Introduction

03_046746 intro.qxp 1/12/07 5:51 PM Page 5

How This Book Is Organized
I divided this book into six major parts, each of which contains several
chapters. Although I arranged the chapters in a fairly logical sequence, you
can read them in any order you choose. Here’s a quick preview of what’s in
store for you.

Part I: Introducing VBA
Part I has but two chapters. I introduce the VBA language in the first chapter.
In Chapter 2, I let you get your feet wet right away by taking you on a hands-
on guided tour.

Part II: How VBA Works with Excel
In writing this book, I assume that you already know how to use Excel. The
four chapters in Part II give you a better grasp on how VBA is implemented in
Excel. These chapters are all important, so I don’t recommend skipping past
them, okay?

Part III: Programming Concepts
The eight chapters in Part III get you into the nitty-gritty of what program-
ming is all about. You may not need to know all this stuff, but you’ll be glad
it’s there if you ever do need it.

Part IV: Communicating with Your Users
One of the coolest parts of programming in Excel is designing custom dialog
boxes (well, at least I like it). The chapters in Part IV show you how to create
dialog boxes that look like they came straight from the software lab at
Microsoft.

6 Excel 2007 VBA Programming For Dummies

03_046746 intro.qxp 1/12/07 5:51 PM Page 6

Part V: Putting It All Together
The chapters in Part VI pull together information from the preceding chap-
ters. You discover how to include your own custom buttons in the Excel user
interface, you find out how to develop custom worksheet functions, create
add-ins, design user-oriented applications, and even work with other Office
applications.

Part VI: The Part of Tens
Traditionally, books in the For Dummies series contain a final part that con-
sists of short chapters with helpful or informative lists. Because I’m a sucker
for tradition, this book has two such chapters that you can peruse at your
convenience. (If you’re like most readers, you’ll turn to this part first.)

Marginal Icons
Somewhere along the line, a market research company must have shown that
publishers can sell more copies of their computer books if they add icons to
the margins of those books. Icons are those little pictures that supposedly
draw your attention to various features, or help you decide whether some-
thing is worth reading.

I don’t know if this research is valid, but I’m not taking any chances. So here
are the icons you encounter in your travels from front cover to back cover:

When you see this icon, the code being discussed is available on the Web.
Download it, and eliminate lots of typing. See “Get the Sample Files” below,
for more information.

This icon flags material that you might consider technical. You may find it
interesting, but you can safely skip it if you’re in a hurry.

Don’t skip information marked with this icon. It identifies a shortcut that
can save you lots of time (and maybe even allow you to leave the office at
a reasonable hour).

7Introduction

03_046746 intro.qxp 1/12/07 5:51 PM Page 7

This icon tells you when you need to store information in the deep recesses
of your brain for later use.

Read anything marked with this icon. Otherwise, you may lose your data,
blow up your computer, cause a nuclear meltdown — or maybe even ruin
your whole day.

Get the Sample Files
This book has its very own Web site where you can download the example
files discussed and view Bonus Chapters. To get these files, point your Web
browser to:

www.dummies.com/go/excel2007vba.

Having the sample files will save you a lot of typing. Better yet, you can
play around with them and experiment with various changes. In fact, I highly
recommend playing around with these files. Experimentation is the best way
to master VBA.

Now What?
Reading this introduction was your first step. Now, it’s time to move on and
become a programmer (there’s that p word again!).

If you’re a programming virgin, I strongly suggest that you start with Chapter
1 and progress in chapter order until you’ve discovered enough. Chapter 2
gives you some immediate hands-on experience, so you have the illusion that
you’re making quick progress.

But it’s a free country (at least it was when I wrote these words); I won’t sic
the Computer Book Police on you if you opt to thumb through randomly and
read whatever strikes your fancy.

I hope you have as much fun reading this book as I did writing it.

8 Excel 2007 VBA Programming For Dummies

03_046746 intro.qxp 1/12/07 5:51 PM Page 8

Chapter 1

What Is VBA?
In This Chapter
� Gaining a conceptual overview of VBA

� Finding out what you can do with VBA

� Discovering the advantages and disadvantages of using VBA

� Taking a mini-lesson on the history of Excel

This chapter is completely devoid of any hands-on training material. It
does, however, contain some essential background information that

assists you in becoming an Excel programmer. In other words, this chapter
paves the way for everything else that follows and gives you a feel for how
Excel programming fits into the overall scheme of the universe.

Okay, So What Is VBA?
VBA, which stands for Visual Basic for Applications, is a programming lan-
guage developed by Microsoft — you know, the company that’s run by the
richest man in the world. Excel, along with the other members of Microsoft
Office 2007, includes the VBA language (at no extra charge). In a nutshell,
VBA is the tool that people like you and me use to develop programs that
control Excel.

Imagine an intelligent robot that knows all about Excel. This robot can read
instructions, and it can also operate Excel very fast and accurately. When you
want the robot to do something in Excel, you write up a set of robot instruc-
tions by using special codes. Tell the robot to follow your instructions, while
you sit back and drink a glass of lemonade. That’s kind of what VBA is all
about — a code language for robots. Note, however, that Excel does not come
with a robot or lemonade.

05_046746 ch01.qxp 1/12/07 6:16 PM Page 11

Don’t confuse VBA with VB (which stands for Visual Basic). VB is a program-
ming language that lets you create standalone executable programs (those EXE
files). Although VBA and VB have a lot in common, they are different animals.

What Can You Do with VBA?
You’re probably aware that people use Excel for thousands of different tasks.
Here are just a few examples:

� Keeping lists of things such as customer names, students’ grades, or
holiday gift ideas (a nice fruitcake would be lovely)

� Budgeting and forecasting

� Analyzing scientific data

� Creating invoices and other forms

� Developing charts from data

� Yadda, yadda, yadda

The list could go on and on, but I think you get the idea. My point is simply
that Excel is used for a wide variety of things, and everyone reading this book
has different needs and expectations regarding Excel. One thing virtually
every reader has in common is the need to automate some aspect of Excel.
That, dear reader, is what VBA is all about.

12 Part I: Introducing VBA

A few words about terminology
Excel programming terminology can be a bit
confusing. For example, VBA is a programming
language, but it also serves as a macro lan-
guage. What do you call something written in
VBA and executed in Excel? Is it a macro or is it
a program? Excel’s Help system often refers to
VBA procedures as macros, so I use that termi-
nology. But I also call this stuff a program.

I use the term automate throughout this book. This
term means that a series of steps are completed

automatically. For example, if you write a macro
that adds color to some cells, prints the work-
sheet, and then removes the color, you have auto-
mated those three steps.

By the way, macro does not stand for Messy
And Confusing Repeated Operation. Rather, it
comes from the Greek makros, which means
large — which also describes your paycheck
after you become an expert macro programmer.

05_046746 ch01.qxp 1/12/07 6:16 PM Page 12

For example, you might create a VBA program to format and print your
month-end sales report. After developing and testing the program, you can
execute the macro with a single command, causing Excel to automatically
perform many time-consuming procedures. Rather than struggle through
a tedious sequence of commands, you can grab a cup of joe and let your
computer do the work — which is how it’s supposed to be, right?

In the following sections, I briefly describe some common uses for VBA
macros. One or two of these may push your button.

Inserting a bunch of text
If you often need to enter your company name, address, and phone number
in your worksheets, you can create a macro to do the typing for you. You can
extend this concept as far as you like. For example, you might develop a
macro that automatically types a list of all salespeople who work for your
company.

Automating a task you perform frequently
Assume you’re a sales manager and you need to prepare a month-end
sales report to keep your boss happy. If the task is straightforward, you can
develop a VBA program to do it for you. Your boss will be impressed by the
consistently high quality of your reports, and you’ll be promoted to a new job
for which you are highly unqualified.

Automating repetitive operations
If you need to perform the same action on, say, 12 different Excel workbooks,
you can record a macro while you perform the task on the first workbook and
then let the macro repeat your action on the other workbooks. The nice thing
about this is that Excel never complains about being bored. Excel’s macro
recorder is similar to recording sound on a tape recorder. But it doesn’t
require a microphone.

Creating a custom command
Do you often issue the same sequence of Excel menu commands? If so, save
yourself a few seconds by developing a macro that combines these commands
into a single custom command, which you can execute with a single keystroke
or button click.

13Chapter 1: What Is VBA?

05_046746 ch01.qxp 1/12/07 6:16 PM Page 13

Creating a custom button
You can customize your Quick Access Toolbar with your own buttons that
execute the macros you write. Office workers tend to be very impressed by
this sort of thing.

Developing new worksheet functions
Although Excel includes numerous built-in functions (such as SUM and
AVERAGE), you can create custom worksheet functions that can greatly
simplify your formulas. I guarantee you’ll be surprised by how easy this is.
(I show you how to do this in Chapter 21.) Even better, the Insert Function
dialog box displays your custom functions, making them appear built in.
Very snazzy stuff.

Creating complete, macro-driven
applications
If you’re willing to spend some time, you can use VBA to create large-scale
applications complete with a custom Ribbon, dialog boxes, on-screen help,
and lots of other accoutrements. This book doesn’t go quite that far, but I’m
just telling you this to impress you with how powerful VBA really is.

Creating custom add-ins for Excel
You’re probably familiar with some of the add-ins that ship with Excel.
For example, the Analysis ToolPak is a popular add-in. You can use VBA to
develop your own special-purpose add-ins. I developed my Power Utility
Pak add-in by using only VBA, and people all around the world use it.

Advantages and Disadvantages of VBA
In this section, I briefly describe the good things about VBA — and I also
explore its darker side.

14 Part I: Introducing VBA

05_046746 ch01.qxp 1/12/07 6:16 PM Page 14

VBA advantages
You can automate almost anything you do in Excel. To do so, you write
instructions that Excel carries out. Automating a task by using VBA offers
several advantages:

� Excel always executes the task in exactly the same way. (In most cases,
consistency is a good thing.)

� Excel performs the task much faster than you can do it manually
(unless, of course, you’re Clark Kent).

� If you’re a good macro programmer, Excel always performs the task
without errors (which probably can’t be said about you or me).

� If you set things up properly, someone who doesn’t know anything
about Excel can perform the task.

� You can do things in Excel that are otherwise impossible — which can
make you a very popular person around the office.

� For long, time-consuming tasks, you don’t have to sit in front of your
computer and get bored. Excel does the work, while you hang out at the
water cooler.

VBA disadvantages
It’s only fair that I give equal time to listing the disadvantages (or potential
disadvantages) of VBA:

� You have to find out how to write programs in VBA (but that’s why
you bought this book, right?). Fortunately, it’s not as difficult as you
might expect.

� Other people who need to use your VBA programs must have their
own copies of Excel. It would be nice if you could press a button that
transforms your Excel/VBA application into a stand-alone program, but
that isn’t possible (and probably never will be).

� Sometimes, things go wrong. In other words, you can’t blindly assume that
your VBA program will always work correctly under all circumstances.
Welcome to the world of debugging and, if others are using your macros,
technical support.

� VBA is a moving target. As you know, Microsoft is continually upgrading
Excel. Even though Microsoft puts great effort into compatibility between
versions, you may discover that VBA code you’ve written for Excel 2007
doesn’t work properly with older versions or with a future version of Excel.

15Chapter 1: What Is VBA?

05_046746 ch01.qxp 1/12/07 6:16 PM Page 15

VBA in a Nutshell
Just to let you know what you’re in for, I’ve prepared a quick and dirty
summary of what VBA is all about. Of course, I describe all this stuff in
semi-excruciating detail later in the book.

� You perform actions in VBA by writing (or recording) code in a
VBA module. You view and edit VBA modules by using the Visual
Basic Editor (VBE).

� A VBA module consists of Sub procedures. A Sub procedure has noth-
ing to do with underwater vessels or tasty sandwiches. Rather, it’s com-
puter code that performs some action on or with objects (discussed in a
moment). The following example shows a simple Sub procedure called
AddEmUp. This amazing program displays the result of 1 plus 1.

Sub AddEmUp()
Sum = 1 + 1
MsgBox “The answer is “ & Sum

End Sub

� A VBA module can also have Function procedures. A Function proce-
dure returns a single value. You can call it from another VBA procedure
or even use it as a function in a worksheet formula. An example of a
Function procedure (named AddTwo) follows. This Function accepts
two numbers (called arguments) and returns the sum of those values.

Function AddTwo(arg1, arg2)
AddTwo = arg1 + arg2

End Function

� VBA manipulates objects. Excel provides dozens and dozens of objects
that you can manipulate. Examples of objects include a workbook, a work-
sheet, a cell range, a chart, and a Shape. You have many more objects at
your disposal, and you can manipulate them by using VBA code.

� Objects are arranged in a hierarchy. Objects can act as containers for
other objects. At the top of the object hierarchy is Excel. Excel itself is an
object called Application. The Application object contains other objects
such as Workbook objects and Add-In objects. The Workbook object
can contain other objects, such as Worksheet objects and Chart objects.
A Worksheet object can contain objects such as Range objects and
PivotTable objects. The term object model refers to the arrangement of
these objects. (Object model mavens can find out more in Chapter 4.)

� Objects of the same type form a collection. For example, the Worksheets
collection consists of all the worksheets in a particular workbook. The
Charts collection consists of all Chart objects in a workbook. Collections
are themselves objects.

16 Part I: Introducing VBA

05_046746 ch01.qxp 1/12/07 6:16 PM Page 16

� You refer to an object by specifying its position in the object hierarchy,
using a dot (that is, a period) as a separator. For example, you can refer
to the workbook Book1.xlsx as

Application.Workbooks(“Book1.xlsx”)

This refers to the workbook Book1.xlsx in the Workbooks collection.
The Workbooks collection is contained in the Application object (that
is, Excel). Extending this to another level, you can refer to Sheet1 in
Book1.xlsx as

Application.Workbooks(“Book1.xlsx”).Worksheets(“Sheet1
”)

As shown in the following example, you can take this to still another
level and refer to a specific cell (in this case, cell A1):

Application.Workbooks(“Book1.xlsx”).Worksheets(“Sheet1
”).Range(“A1”)

� If you omit specific references, Excel uses the active objects. If
Book1.xlsx is the active workbook, you can simplify the preceding
reference as follows:

Worksheets(“Sheet1”).Range(“A1”)

If you know that Sheet1 is the active sheet, you can simplify the
reference even more:

Range(“A1”)

� Objects have properties. You can think of a property as a setting for
an object. For example, a Range object has such properties as Value
and Address. A Chart object has such properties as HasTitle and Type.
You can use VBA to determine object properties and also to change
properties.

� You refer to a property of an object by combining the object name
with the property name, separated by a dot. For example, you can
refer to the Value property in cell A1 on Sheet1 as follows:

Worksheets(“Sheet1”).Range(“A1”).Value

� You can assign values to variables. A variable is a named element that
stores information. You can use variables in your VBA code to store
such things as values, text, or property settings. To assign the value
in cell A1 on Sheet1 to a variable called Interest, use the following VBA
statement:

Interest = Worksheets(“Sheet1”).Range(“A1”).Value

17Chapter 1: What Is VBA?

05_046746 ch01.qxp 1/12/07 6:16 PM Page 17

� Objects have methods. A method is an action Excel performs with
an object. For example, one of the methods for a Range object is
ClearContents. This method clears the contents of the range.

� You specify a method by combining the object with the method,
separated by a dot. For example, the following statement clears the
contents of cell A1:

Worksheets(“Sheet1”).Range(“A1”).ClearContents

� VBA includes all the constructs of modern programming languages,
including arrays and looping. In other words, if you’re willing to spend
a little time mastering the ropes, you can write code that does some
incredible things.

Believe it or not, the preceding list pretty much describes VBA in a nutshell.
Now you just have to find out the details. That’s the purpose of the rest of
this book.

An Excursion into Versions
If you plan to develop VBA macros, you should have some understanding
of Excel’s history. I know you weren’t expecting a history lesson when you
picked up this book, but bear with me. This is important stuff.

Here are all the major Excel for Windows versions that have seen the light of
day, along with a few words about how they handle macros:

� Excel 2: The original version of Excel for Windows was called Version 2
(rather than 1) so that it would correspond to the Macintosh version.
Excel 2 first appeared in 1987 and nobody uses it anymore, so you can
pretty much forget that it ever existed.

� Excel 3: Released in late 1990, this version features the XLM macro
language. Nobody uses this version either.

� Excel 4: This version hit the streets in early 1992. It also uses the XLM
macro language. A small number of people still use this version. (They
subscribe to the philosophy if it ain’t broke, don’t fix it.)

� Excel 5: This one came out in early 1994. It was the first version
to use VBA (but it also supports XLM). Excel 5 users are becoming
increasingly rare.

18 Part I: Introducing VBA

05_046746 ch01.qxp 1/12/07 6:16 PM Page 18

� Excel 95: Technically known as Excel 7 (there is no Excel 6), this version
began shipping in the summer of 1995. It’s a 32-bit version and requires
Windows 95 or Windows NT. It has a few VBA enhancements, and it
supports the XLM language. Occasionally, I’ll run into someone who
still uses this version.

� Excel 97: This version (also known as Excel 8) was born in January,
1997. It has many enhancements and features an entirely new interface
for programming VBA macros. Excel 97 also uses a new file format
(which previous Excel versions cannot open). A fair number of people
continue to use this version.

� Excel 2000: This version’s numbering scheme jumped to four digits.
Excel 2000 (also known as Excel 9) made its public debut in June 1999.
It includes only a few enhancements from a programmer’s perspective,
with most enhancements being for users — particularly online users.
With Excel 2000 came the option to digitally sign macros, thus enabling
you to guarantee your users that the code delivered is truly yours. Excel
2000 still has a modest number of users.

� Excel 2002: This version (also known as Excel 10 or Excel XP) appeared
in late 2001. Perhaps this version’s most significant feature is the ability
to recover your work when Excel crashes. This is also the first version
to use copy protection (known as product activation).

� Excel 2003: Of all the Excel upgrades I’ve ever seen (and I’ve seen them
all), Excel 2003 has the fewest new features. In other words, most hard-
core Excel users (including yours truly) were very disappointed with
Excel 2003. Yet people still bought it. I think these were the folks moving
up from a pre-Excel 2002 version.

� Excel 2007: The latest, and without a doubt, the greatest. Microsoft
outdid its corporate self with this version. Excel 2007 has a new look,
a new user interface, and now supports more than a million rows. This
book is written for Excel 2007, so if you don’t have this version, you’re
reading the wrong book.

So what’s the point of this mini history lesson? If you plan to distribute your
Excel/VBA files to other users, it’s vitally important that you understand
which version of Excel they use. People using an older version won’t be able
to take advantage of features introduced in later versions. For example, if you
write VBA code that references cell XFD1048576 (the last cell in a workbook) ,
those who use an earlier version will get an error because pre-Excel 2007
worksheets only had 65,536 rows and 255 columns (the last cell is IV65536).
Excel 2007 also has some new objects, methods, and properties. If you use
these in your code, users with an older version of Excel will get an error
when they run your macro — and you’ll get the blame.

19Chapter 1: What Is VBA?

05_046746 ch01.qxp 1/12/07 6:16 PM Page 19

20 Part I: Introducing VBA

05_046746 ch01.qxp 1/12/07 6:16 PM Page 20

	Untitled

